

About this series:
How to Write a Wordpress Plugin, written by Ronald Huereca is an extensive, twelve
part series on the process of creating your own Wordpress plugin. Every step is covered,
from “Seven Steps for Writing a Wordpress Plugin” all the way down to adding ajax to
your plugin and releasing it. This is an excellent article series for anyone interested in
the process behind creating your very first Wordpress plugin. With code examples to
help assist you, you will be on your way to future releases of your own plugins for the
Wordpress community.

About the author:
Ronald is frequently found laying his thoughts out in strong, straight-forward articles on
various web related topics. He comes from a relatively strong technical and business
background, having an undergrad in Electrical Engineering Technology and a Master of
Science in Business Administration. A programmer by day, and web hobbyist (and
writer) by night, who also runs his own blog at www.ronalfy.com. Ronald has been on
the Devlounge team since the fall of 2006, and has contributed many wonderful articles,
including this very wordpress series. He also writes for Weblogtoolscollection.

http://www.ronalfy.com

Introduction

For any WordPress user, plugins are essential. WordPress Plugins allow those with little
to no programming skills to extend the functionality of their blog. Plugins come in all
shapes and sizes, and there is a plugin that does just about anything for WordPress.

As good as WordPress is as a standalone application, there are still things that
WordPress lacks. Users are requesting more and more features for WordPress that
would be very feasible to write as a plugin. There are many untapped ideas out there,
and new ones created every day.

Having released three plugins already (not counting the custom ones I wrote), I am
aware of some of the limitations of WordPress and wish to share some of the lessons I
have learned (and am still learning) about creating WordPress plugins. As a result, I will
be starting series that will discuss various topics regarding writing your own WordPress
plugin. The series will start off very introductory and will assume your plugin knowledge
is zilch.

Who is this Series For?

This series is for any WordPress user who is curious about or wants to learn how to
write their own WordPress plugin. Readers of this series will have an intermediate
knowledge of PHP, know a little JavaScript, and be decent at Cascading Style Sheets.

This plugin series will benefit theme designers, those that like to tinker with plugin code,
and those that are interested in writing their own plugin from scratch.

Tools to Get the Job Done

To write plugins, any text editor will do. Here are the tools I personally use to create
plugins.

Dreamweaver

Firefox

Firebug Firefox Extension

Web Developer Firefox Extension

XAMPP with a local WordPress installation

This series assumes you have WordPress 2.1.x or greater installed.

Code Samples

All code I use will be available for download after each post in the Conclusion section. I
will be building the code as I go along, so each download will be different. I will be
creating a plugin that doesn’t really do anything other than to show you the basics of
how a plugin works.

Since each post in this series builds on top of each other, it is recommended to read this
series in the order it is presented.

I highly recommend not using the test plugin on a production WordPress installation.
Instead, use a local WordPress installation.

Topics

I plan to start off really basic and move quickly into the more hard-core WordPress
plugin functions. This series will not be a comprehensive micro-detail of plugin
development, but will hopefully give you a nice foundation to start your own plugin
development. If you have any questions or suggestions, please leave a comment or e-
mail me using the Devlounge contact form (Ronald). I do ask that you not rely on
Devlounge for support and instead use the WordPress Support forums.

Techniques

Some of the techniques I use in my code samples may not be the best way to present
code and you may be cringing because I don’t have a lot of shortcuts. I apologize in
advance. Everybody has a different coding style.

As far as plugin techniques, structure, behavior, and other nuisances, if there is a better
and easier way that I overlooked, I am all ears (er, eyes).

Seven Reasons to Write a Wordpress Plugin

While writing the “How to Write a Plugin” series, I thought it would be beneficial to list
some reasons why WordPress users would want to write a WordPress plugin in the first
place.

Listed below are seven reasons why a WordPress user should consider writing a
WordPress plugin.

You like a plugin’s idea, but don’t like the plugin’s implementation

Whether discovering WordPress plugins on Weblog Tools Collection, the official
WordPress plugins directory, or the WordPress Plugin Database, you will inevitably find
a plugin that meets your needs — sort of.

You like the idea of the plugin, but not really the approach the plugin author took with it.
Why not run with the original idea and create your own separate version?

You want to modify existing plugin code

Sometimes the plugin’s output needs to be tweaked a little bit or some functionality you
would like is missing. You can try convincing the plugin author to add your feature, but
plugin authors are usually quite busy or they may not like your suggestion. It takes a lot
of effort by a plugin author to provide support and field feature and bug requests for a
plugin that is free. Sometimes the plugin is no longer supported by anyone.

In the event the plugin author is unable to your needs, it will be up to you to take the
initiative and modify the existing plugin code. If you do a good enough job and make
enough changes, you can re-release the plugin as long as the original plugin was
released under a GPL compatible license.

Usually one of the first things I do when I install or test a new plugin is to look at the code
and see what I can modify, what I can’t modify, and what I can possibly add or take
away.

You want to extend a plugin

Sometimes a plugin is good as it is, but you would like to build upon it and release your
own version. For example, you may think a plugin would work better using AJAX, or
would like to add more hooks so that it is compatible with other plugins. You may want to
add an admin panel so you don’t have to dig through the code to change the output.

As stated earlier, if a plugin is released as GPL compatible, you are free to release your
own version.

You want portable theme code

For those of us who opted to build a custom theme from scratch rather than download
one, you may find yourself re-using code snippets all over the place. Wouldn’t it be

better just to write your own plugin that combined all the little code snippets so that you
could use them as template tags?

The beauty of template tags is that you can re-use them over and over for your theme
and any future ones you build. And you only have one place to change the code rather
than several.

You are a theme designer

I would argue that if you are a template designer for WordPress, the next logical step is
to be a plugin author. Writing plugins gives you a more intimate knowledge of how
WordPress behaves and allows you to extend the functionality of your released themes.

You want to make money

A good plugin author can usually get paid on the side for custom work. Some plugin
authors take donations as well or charge extra for providing support or for consulting.

If you are a custom theme designer, you can package your custom plugins in with the
theme for an extra charge.

You want incoming links

When launching the Reader Appreciation Project, one of the goals I had was to rapidly
build incoming links. The best way I knew how was to write some WordPress plugins
and promote them. One of my plugins (WP Ajax Edit Comments) turned out to be very
popular and has currently generated more than 100 incoming links.

How to get ideas for Wordpress Plugins

If you are convinced that you would like to investigate the possibility of creating your own
WordPress plugin, it may be hard to think of that idea that will allow you to take the
plunge. Fortunately, there are many places to find inspiration regarding developing your
own WordPress plugin. Within this post, I will list several ways to get ideas for your very
own WordPress plugin.

Listen to your Readers

Your readers are a valuable asset when it comes to getting ideas for plugins. For
example, a reader might request an easy way to reply to or edit comments. Since blog
readers are the ones who use your blog the most, they have a unique insight in what
they want out of your blog. Just the other day, one of my readers asked me to have a
way to preview a comment before posting. Luckily there is already a few plugins out
there for that, but sometimes your readers will suggest something that has yet to be
implemented as a plugin.

Listen to Yourself

“If only WordPress could do…”

If you find that WordPress lacks a feature that you truly want, why not program it yourself
in the form of a plugin? Chances are that if you desire the feature added, others will too.

Check out Blogging Resources

Sites such as The Blog Herald and Weblog Tools Collection are great resources for
plugin ideas. On Wednesday, The Blog Herald has a column called WordPress
Wednesday. Within this column are plugin requests and a “wishlist” for WordPress.
Weblog Tools Collection typically has a plugin announcement almost every day, and
from there you can get an idea of what kind of plugins people are churning out.

Check out the WordPress Support Forums

The WordPress Support Forums are full of people looking for help on extending their
WordPress blog. A particularly useful forum for plugin ideas is the Requests and
Feedback forum. Another area is the WordPress ideas page.

Investigate APIs

Online services such as Flickr, FeedBurner, Google Maps, and others have APIs
(Application Program Interfaces) that allow third-party applications the ability to interface
with their services. Through these APIs, you start programming your own WordPress
solution.

If there is a service that you really like, but you would like to see it included in
WordPress, investigate the service’s API and see if it would make a good plugin.

Third Party Applications

There are many third-party applications that people may have installed along with a
WordPress blog. Examples of such programs are Mint, Vanilla, and many others. Why
not develop a WordPress plugin that integrates these third-party applications into a
WordPress blog?

Existing WordPress Plugins

If you find a WordPress plugin you really like and would like to branch out with your own
idea, feel free to do so. If you don’t like the implementation of a particular plugin, build
your own implementation. There are many plugins out there that essentially do the same
thing, but are all slightly different.

Structure of a Wordpress Plugin

One of the more important aspects of developing a WordPress plugin is how you
structure it. This post will go over some tips on how to structure your plugin to organize
your plugin resources and avoid naming collisions. Each plugin author is different in the
way they structure a plugin, so these tips are merely my own personal preference. I'll
first briefly describe how a WordPress plugin works and then go into a plugin's structure.

How a WordPress Plugin Works

After placing a WordPress plugin into the "wp-content/plugins/" folder, the plugin should
automatically be available to install.

When a plugin is "Activated", this tells WordPress to load your bit of code on "each"
page (including admin pages). This is why if you have many plugins activated, your
WordPress installation may be very slow due to the amount of code being included.

Since WordPress loads your code automatically when the plugin is activated, you can
take advantage of this by tapping into the WordPress Plugin Application Program
Interface (API). You can also access the WordPress template tags or create your own.

I suggest reading into the WordPress loop if you plan on making changes to the post
content or comments. The WordPress loop is the loop that displays your posts. Some
template tags will not work outside of this loop, so it is imperative that you know exactly
where your code is executing. You can control this by taking advantage of actions and
filters, which will be explained in later posts.

Folder Structure

All WordPress plugins will be installed in the wp-content/plugins directory. Some plugin
authors simply include a PHP file for their plugin, but I recommend always creating a
folder to store your plugin.

I typically structure my plugin in this folder structure:

Plugin Folder Name (The name of your plugin with no spaces or special
characters)

o Main plugin php file
o js folder (for JavaScript files)
o css folder (for StyleSheet files)
o php folder (for other PHP includes)

For example purposes, here is a sample structure I have created:

devlounge-plugin-series
o devlounge-plugin-series.php
o js
o css
o php

Within the devlounge-plugin-series folder, I would include just the main PHP file and
put all other files in their respective folders. This structure will assist other plugin authors
who look at your code to be able to tell what the main plugin file is and where all the
supporting files are located.

WordPress also recommends placing images in their own directory and including a read
me file for your plugin.

Main Plugin File

When you start a new plugin file, the first seven lines are the lines that describe your
plugin.

PHP:

1. <?php
2. /*
3. Plugin Name: Your Plugin Name Here
4. Plugin URI: Your Plugin URI
5. Version: Current Plugin Version
6. Author: Who Are You?
7. Description: What does your plugin do?

Line 3 allows you to name your plugin. Line 4 allows you to point a user to the web
location of your plugin. Line 5 allows you to specify the current version. Line 6 allows you
to specify the author of the plugin. Line 7 allows you to describe your plugin.

Shown below is an example of the code filled out:

PHP:

1. <?php
2. /*
3. Plugin Name: Devlounge Plugin Series
4. Plugin URI: http://www.devlounge.net/
5. Version: v1.00
6. Author: Ronald Huereca
7. Description: A sample plugin for a Devlounge series.

Shown below is a screenshot of what the plugin would look like in the WordPress
Plugins panel.

Set Up a Class Structure

http://www.devlounge.net/
http://www.ronalfy.com/">Ronald
http://www.devlounge.net">Devlounge

You don't have to be incredibly familiar with PHP Classes to develop a WordPress
plugin, but it sure helps. A class structure is necessary in order to avoid naming
collisions with other WordPress plugins. If someone out there sets up the same function
name as yours in a plugin, an error will result and WordPress will be rendered
inoperable until that plugin is removed.

To avoid naming collisions, it is imperative that all plugins incorporate a PHP class
structure. Here is some bare-bones code that will allow you to set up a class structure.

PHP:

1. if (!class_exists("DevloungePluginSeries")) {
2. class DevloungePluginSeries {
3. function DevloungePluginSeries() { //constructor
4.
5. }
6.
7. }
8.
9. } //End Class DevloungePluginSeries

What the above code does is checks for the existence of a class named
DevloungePluginSeries. If the class doesn't exist, the class is created.

Initialize Your Class

The next bit of code will initialize (instantiate) your class.

PHP:

1. if (class_exists("DevloungePluginSeries")) {
2. $dl_pluginSeries = new DevloungePluginSeries();
3. }

All the above code checks for is if the class DevloungePluginSeries has been created.
If it has, a variable called $dl_pluginSeries is created with an instance of the
DevloungePluginSeries class.

Set Up Actions and Filters

The next bit of code sets up a place holder for WordPress actions and filters (which I will
go over in a later post).

PHP:

1. //Actions and Filters
2. if (isset($dl_pluginSeries)) {
3. //Actions
4.

5. //Filters
6. }
7.
8. ?>

The above code checks to make sure the $dl_pluginSeries variable is set. If it is (and
that's only if the class exists), then the appropriate actions and filters are set up.

Wordpress Plugin Actions

WordPress actions allow you as a plugin author to be able to hook into the WordPress
application and execute a piece of code. An example of an action would be that you
want a execute some code after a user has published a post or left a comment.

Some of the actions that I use heavily are:

admin_menu: Allows you to set up an admin panel for your plugin.

wp_head: Allows you to insert code into the <head> tag of a blog

Actions in Action

While defining the structure of a WordPress plugin, I left a place holder for some actions.
In this example, we are going to set up a piece of code that will run inside the <head>
tag of a WordPress blog.

First we need to add a function into our DevloungePluginSeries class.

PHP:

1. function addHeaderCode() {
2. ?>
3. <!-- Devlounge Was Here -->
4. <?php
5.
6. }

All the above function does is output an HTML comment. Rather simple, but you could
output just about anything. To call this function, we add an action.

PHP:

1. //Actions and Filters
2. if (isset($dl_pluginSeries)) {
3. //Actions
4. add_action('wp_head', array(&$dl_pluginSeries, 'addHeaderCode'), 1);
5. //Filters
6. }

From the WordPress Plugin API page, the add_action structure is as follows:
add_action ('hook_name', 'your_function_name', [priority], [accepted_args]);

Since we are calling a function inside of a class, we pass the action an array with a
reference to our class variable (dl_pluginSeries) and the function name we wish to call
(addHeaderCode). We have given our plugin a priority level of 1, with lower numbers
executed first.

Running the Code

If the Devlounge Plugin Series plugin is activated, the comment of "Devlounge was here"
should show up when you go to View->Source in your web browser when looking at your
main blog site.

Removing Actions

If your plugin dynamically adds actions, you can dynamically remove actions as well with
the remove_actions function. The structure is as follows:
remove_action('action_hook','action_function').

Wordpress Plugin Filters

WordPress filters are the functions that your plugin can hook into with regards to
modifying text. This modified text is usually formatted for either inserting into a database
or displaying the output to the end user.

WordPress filters allow to you modify virtually any kind of text displayed and are
extremely powerful. WordPress filters allow you to modify posts, feeds, how authors are
displayed in comments, and much, much more.

To demonstrate the usefulness of WordPress filters, we will continue working with the
existing code in the Devlounge Plugin Series code from the WordPress Plugin Actions

post.

Adding A Content Filter

One of the cool filters you can hook into is one called 'the_content'. This particular filter
is run for post content being displayed to the browser. We're going to just add a line of
text that will be displayed at the end of the content.

The format for adding a filter from the WordPress Plugin API is: add_filter('hook_name',
'your_filter', [priority], [accepted_args]);

We just need to add in a function to the DevloungePluginSeries class. Let's call it
addContent.

PHP:

1. function addContent($content = '') {
2. $content .= "<p>Devlounge Was Here</p>";
3. return $content;
4. }

In the above code, the following things are happening.

The above function will accept one variable named content.

If no variable is passed, a default value is set.

The content variable has our line of text added to it.

The text is then returned.

After the function is added to the class, the next step is to hook into the 'the_content'
filter and call the function.

PHP:

1. //Actions and Filters
2. if (isset($dl_pluginSeries)) {
3. //Actions
4. add_action('wp_head', array(&$dl_pluginSeries, 'addHeaderCode'), 1);

5. //Filters
6. add_filter('the_content', array(&$dl_pluginSeries, 'addContent'));
7. }

As you can see on line 6, a filter with the name 'the_content' is added and our function
'addContent' is called.

If the plugin were activated and a post was viewed, the text "Devlounge Was Here"
would show up towards the end of the post content.

Adding An Author Filter

Another example of a filter I will show is manipulating the display of comment authors.
I'm simply going to make all authors uppercase.

We just need to add in a function to the DevloungePluginSeries class. Let's call it
authorUpperCase.

PHP:

1. function authorUpperCase($author = '') {
2. return strtoupper($author);
3. }

In the above code, the following things are happening.

The above function will accept one variable named author.

If no variable is passed, a default value is set.

The author string is returned as uppercase.

After the function is added to the class, the next step is to hook into the
'get_comment_author' filter and call the function.

PHP:

1. //Actions and Filters
2. if (isset($dl_pluginSeries)) {
3. //Actions
4. add_action('wp_head', array(&$dl_pluginSeries, 'addHeaderCode'), 1);
5. //Filters
6. add_filter('the_content', array(&$dl_pluginSeries, 'addContent'));
7. add_filter('get_comment_author', array(&$dl_pluginSeries,

'authorUpperCase'));
8. }

As you can see on line 7, a filter with the name 'get_comment_author' is added and our
function 'authorUpperCase' is called.

If the plugin were activated and a post with comments was viewed, the comment authors
would all be upper case.

Applying Filters

One of the more powerful things you can do with filters is to call then dynamically.
There's no need to add a filter to be run every time. You can run a filter whenever you
choose from within your code.

The format for the apply_filters function is: apply_filter('filter name', 'your text');

You will see an example of apply_filters in use later in this series.

Constructing a Wordpress Plugin Admin Panel

Any plugin that needs user input, such as changing a variable, should have some kind of
administration panel. Building a administration panel

isn't all that difficult, so it annoys

me when plugin authors decide not to build one and want plugin users to modify PHP
code. Asking users -- whose experience with PHP might be nil -- to modify code is
generally not a good idea. This post will go into what it takes to successfully create an
admin panel for your plugin.

A Place to Store the Variables

One of the first problems you will likely encounter when constructing your own admin
panel is where exactly to store the variables. Luckily WordPress makes it quite easy with
options. I will explain options and database storage in a later post in this series. For now,
all you have to do is nod your head and follow the steps to store your own admin
variables in the WordPress database.

The first thing I usually do with regards to options is to assign a "unique" name for my
admin options. I store this in the form of a member variable inside my class. In the case
of the Devlounge Plugin Series plugin, I added this variable declaration to the
DevloungePluginSeries class:

Name Your Admin Options
PHP:

1. class DevloungePluginSeries {
2. var $adminOptionsName = "DevloungePluginSeriesAdminOptions";
3. function DevloungePluginSeries() { //constructor
4.
5. }

Line 2 shows where I added in my member variable. I named my variable
adminOptionsName and gave it the long and unique value of
DevloungePluginSeriesAdminOptions.

Set Your Admin Default Options

You're going to need a place to initialize your admin options, especially when a user first
activates your plugin. However, you also need to make these options upgrade-proof just
in case you decide to add more options in the future. My technique is to provide a
dedicated function to call your admin options. Your plugin needs may be different, but
most admin panels aren't incredibly complicated so one function for your admin options
should be sufficient.

Here's the function I inserted in the DevloungePluginSeries class:

PHP:

1. //Returns an array of admin options
2. function getAdminOptions() {
3. $devloungeAdminOptions = array('show_header' => 'true',
4. 'add_content' => 'true',
5. 'comment_author' => 'true',
6. 'content' => '');
7. $devOptions = get_option($this->adminOptionsName);
8. if (!empty($devOptions)) {
9. foreach ($devOptions as $key => $option)
10. $devloungeAdminOptions[$key] = $option;
11. }
12. update_option($this->adminOptionsName, $devloungeAdminOptions);
13. return $devloungeAdminOptions;
14. }

What this function does is:

Assigns defaults for your admin options (lines 3 - 6).

Attempts to find previous options that may have been stored in the database (line
7).

If options have been previously stored, it overwrites the default values (lines 8 -
11).

The options are stored in the WordPress database (line 12).

The options are returned for your use (line 13).

Initialize the Admin Options

The getAdminOptions can be called at anytime to retrieve the admin options. However,
what about when the plugin is first installed (er, activated)? There should be some kind
of function that is called that also retrieves the admin options. I added the following
function into the DevloungePluginSeries class:

PHP:

1. function init() {
2. $this->getAdminOptions();
3. }

Short, sweet, and simple. An action, however, is required to call this init function.

PHP:

1. add_action('activate_devlounge-plugin-series/devlounge-plugin-series.php',
array(&$dl_pluginSeries, 'init'));

This action is a little complicated, but easy to figure out. Here's what the action does:

You tell it to run when a plugin has been activated.

You give it the path to the main plugin PHP file, which is devlounge-plugin-
series/devlounge-plugin-series.php. This of course is assuming that your
plugin is properly placed in the wp-content/plugins/ directory.

You pass a reference to the instance variable dl_pluginSeries and call the init
function.

So anytime the plugin is activated, the init function is called for the Devlounge Plugin
Series plugin.

How the Admin Panel Works

Before I delve into the code of constructing the actual admin panel, it will be beneficial to
describe the behavior of the admin panel. Here are the steps you'll want to take for
setting up your admin panel:

Check to see if any form data has been submitted.

Output notifications if form data is present.

Display the admin panel options.

One thing that may confuse you greatly in the admin panel is the use of the _e
WordPress function. The _e function allows WordPress to search for a localized version
of your text. This will help WordPress potentially translate your plugin in the future. The
function works like a normal echo, but instead you pass it your text and an identifier
variable (typically your plugin name). An example would be:

_e('Update Settings', 'DevloungePluginSeries')

This code would work the same way as: echo "Update Settings".

Set up the Admin Panel Function

The first thing we want to do is set up a function that will actually print out the admin
panel. The function's name will be printAdminPage. This next bit of code will read in the
options we specified earlier and check to see if any post options have been submitted.
All the code in this section is assumed to be within the printAdminPage function.

PHP:

1. //Prints out the admin page
2. function printAdminPage() {
3. $devOptions = $this->getAdminOptions();
4.
5. if (isset($_POST['update_devloungePluginSeriesSettings'])) {
6. if (isset($_POST['devloungeHeader'])) {
7. $devOptions['show_header'] = $_POST['devloungeHeader'];
8. }
9. if (isset($_POST['devloungeAddContent'])) {
10. $devOptions['add_content'] =

$_POST['devloungeAddContent'];
11. }
12. if (isset($_POST['devloungeAuthor'])) {
13. $devOptions['comment_author'] = $_POST['devloungeAuthor'];
14. }
15. if (isset($_POST['devloungeContent'])) {
16. $devOptions['content'] = apply_filters('content_save_pre',

$_POST['devloungeContent']);
17. }
18. update_option($this->adminOptionsName, $devOptions);
19.
20. ?>
21. <div class="updated"><p><?php _e("Settings Updated.",

"DevloungePluginSeries");?></p></div>
22. <?php
23. } ?>

All the above code does is load in the options and test to make sure each portion of the
form is submitted. The if-statement overkill isn't necessary, but sometimes it is useful for
debugging. The first form variable that is tested as being set is
update_devloungePluginSeriesSettings. This variable is assigned to our "Submit"
button. If that isn't set, it's assumed that a form hasn't been submitted.

As promised, in line 16, I use the apply_filters function to format the content for saving
in the database.

The next bit of code will display the HTML form that is necessary for the admin panel. It's
a little involved, so I'll summarize it here. All the code is doing is displaying the form
elements and reading in options.

PHP:

1. <div class=wrap>
2. <form method="post" action="<?php echo $_SERVER["REQUEST_URI"]; ?>">
3. <h2>Devlounge Plugin Series</h2>
4. <h3>Content to Add to the End of a Post</h3>
5. <textarea name="devloungeContent" style="width: 80%; height: 100px;"><?php

_e(apply_filters('format_to_edit',$devOptions['content']),
'DevloungePluginSeries') ?></textarea>

6. <h3>Allow Comment Code in the Header?</h3>
7. <p>Selecting "No" will disable the comment code inserted in the header.</p>
8. <p><label for="devloungeHeader_yes"><input type="radio"

id="devloungeHeader_yes" name="devloungeHeader" value="true" <?php if
($devOptions['show_header'] == "true") { _e('checked="checked"',
"DevloungePluginSeries"); }?> /> Yes</label> <label
for="devloungeHeader_no"><input type="radio" id="devloungeHeader_no"
name="devloungeHeader" value="false" <?php if ($devOptions['show_header']
== "false") { _e('checked="checked"', "DevloungePluginSeries"); }?>/>
No</label></p>

9.
10. <h3>Allow Content Added to the End of a Post?</h3>
11. <p>Selecting "No" will disable the content from being added into the end of a

post.</p>
12. <p><label for="devloungeAddContent_yes"><input type="radio"

id="devloungeAddContent_yes" name="devloungeAddContent" value="true"
<?php if ($devOptions['add_content'] == "true") { _e('checked="checked"',
"DevloungePluginSeries"); }?> /> Yes</label> <label
for="devloungeAddContent_no"><input type="radio"
id="devloungeAddContent_no" name="devloungeAddContent" value="false"
<?php if ($devOptions['add_content'] == "false") { _e('checked="checked"',
"DevloungePluginSeries"); }?>/> No</label></p>

13.
14. <h3>Allow Comment Authors to be Uppercase?</h3>
15. <p>Selecting "No" will leave the comment authors alone.</p>
16. <p><label for="devloungeAuthor_yes"><input type="radio"

id="devloungeAuthor_yes" name="devloungeAuthor" value="true" <?php if
($devOptions['comment_author'] == "true") { _e('checked="checked"',
"DevloungePluginSeries"); }?> /> Yes</label> <label
for="devloungeAuthor_no"><input type="radio" id="devloungeAuthor_no"
name="devloungeAuthor" value="false" <?php if
($devOptions['comment_author'] == "false") { _e('checked="checked"',
"DevloungePluginSeries"); }?>/> No</label></p>

17.
18. <div class="submit">
19. <input type="submit" name="update_devloungePluginSeriesSettings"

value="<?php _e('Update Settings', 'DevloungePluginSeries') ?>" /></div>
20. </form>
21. </div>
22. <?php
23. }//End function printAdminPage()

One observation to make in the above code is the reference to the options and how the
HTML and PHP is integrated.

Set up the Admin Panel Action

Now the the printAdminPage function is added, we need to call it through an action.
First a function must be set up right above the actions that it outside the scope of the
class.

PHP:

1. //Initialize the admin panel
2. if (!function_exists("DevloungePluginSeries_ap")) {
3. function DevloungePluginSeries_ap() {
4. global

$dl_pluginSeries;
5. if (!isset($dl_pluginSeries)) {
6. return;
7. }
8. if (function_exists('add_options_page')) {
9. add_options_page('Devlounge Plugin Series', 'Devlounge Plugin Series', 9,

basename(__FILE__), array(&$dl_pluginSeries, 'printAdminPage'));
10. }
11. }
12. }

The above code does this:

A function named DevloungePluginSeries_ap is created.

Variable dl_pluginSeries is tested for existence (lines 4 - 7). This variable
references our class.

An admin page named "Devlounge Plugin Series" is initialized and our
printAdminPage function is referenced (lines 8-10).

The add_options_page function format is described by WordPress as:
add_options_page(page_title, menu_title, access_level/capability, file, [function]);

The access level (in this case a 9) is described in more detail at the Users Levels page

in the WordPress codex.

An action must now be set up to call the DevloungePluginSeries_ap function:

PHP:

1. add_action('admin_menu', 'DevloungePluginSeries_ap');

Constructing a Wordpress Plugin User’s Panel

There will be situations where you will have a main administrative panel, but would like
individual users to set their own preferences. In the case of the Devlounge Plugin Series,
we added an option for text to be added in at the end of each post. However, what if a
logged-in user doesn't want to see this text? Why not give them the option without
affecting all of the other users?

This post will go over the steps to add in your own User's Administration Panel.

Name Your User Options

PHP:

1. class DevloungePluginSeries {
2. var $adminOptionsName = "DevloungePluginSeriesAdminOptions";
3. var $adminUsersName = "DevloungePluginSeriesAdminUsersOptions";

Line 3 shows where I added in the member variable called adminUsersName . I gave
this variable the long and unique name of
DevloungePluginSeriesAdminUsersOptions.

Set Your the Default User Options

You're going to need a place to initialize your user options, especially when a user first
activates your plugin. However, these options should also work outside of the admin
panel where users may or may not be logged in.

Here's the function I inserted in the DevloungePluginSeries class:

PHP:

1. //Returns an array of user options
2. function getUserOptions() {
3. global

$user_email;

4. if (empty($user_email)) {
5. get_currentuserinfo();
6. }
7. if (empty($user_email)) { return ''; }
8. $devOptions = get_option($this->adminUsersName);
9. if (!isset($devOptions)) {
10. $devOptions = array();
11. }
12. if (empty($devOptions[$user_email])) {
13. $devOptions[$user_email] = 'true,true';
14. update_option($this->adminUsersName, $devOptions);
15. }
16. return $devOptions;
17. }

What this function does is:

Checks to see if a user is logged in (lines 3 - 7). This is easily determined by
checking to see if the user_email variable is set.

Attempts to find previous options that may have been stored in the database (line
8).

If options aren't found, defaults are assigned (lines 9-15)

The options are returned for your use (line 16).

Initialize the Admin User Options

The getUserOptions can be called at anytime to retrieve the admin user options.
However, what about when the plugin is first installed (er, activated)? There should be
some kind of function that is called that also retrieves the user options. I added the
following function into the init function:

PHP:

1. function init() {
2. $this->getAdminOptions();
3. $this->getUserOptions();
4. }

Line 3 calls the new function getUserOptions. Since there is already an action added
that calls the init function, no extra steps are necessary.

How the Admin Panel and User Panel Will Work Together

You will recall from the last post about setting up an admin panel that the WordPress
admin could set the content at the end of the post, whether code was shown in the
header, and whether an author's name was uppercase in the comments. The user's
panel allows users who aren't admin to be able to specify whether they want these
options or not.

We're going to allow the user to decide if they:

Want content at the end of the post to show (only if the admin has this enabled
already).

Wants the comment authors to be uppercase (only if the admin has this enabled
already).

Set up the User's Panel Function

The first thing we want to do is set up a function that will actually print out the user's
panel. The function's name will be printAdminUsersPage. This next bit of code will read
in the options we specified earlier and check to see if any post options have been
submitted. All the code in this section is assumed to be within the
printAdminUsersPage function.

PHP:

1. //Prints out the admin page
2. function printAdminUsersPage() {
3. global

$user_email;
4. if (empty($user_email)) {
5. get_currentuserinfo();
6. }
7. $devOptions = $this->getUserOptions();
8.
9. //Save the updated options to the database
10. if (isset($_POST['update_devloungePluginSeriesSettings']) &&

isset($_POST['devloungeAddContent']) && isset($_POST['devloungeAuthor'])) {
11. if (isset($user_email)) {
12. $devOptions[$user_email] = $_POST['devloungeAddContent'] .

"," . $_POST['devloungeAuthor'];
13. ?>
14. <div class="updated"><p>Settings successfully

updated.</p></div>
15. <?php
16. update_option($this->adminUsersName, $devOptions);
17. }
18. }
19. //Get the author options
20. $devOptions = $devOptions[$user_email];
21. $devOptions = explode(",", $devOptions);
22. if (sizeof($devOptions)>= 2) {
23. $content = $devOptions[0];
24. $author = $devOptions[1];

25. }
26. ?>

The above code:

Retrieves the user options (line 7)

Saved post data (if available) to the database (lines 9 - 18)

Reads in comma-separated variables for the user.(lines 19-25)

The next bit of code will display the HTML form that is necessary for the user's panel. All
the code is doing is displaying the form elements and reading in options that were
already retrieved.

PHP:

1. <div class=wrap>
2. <form method="post" action="<?php echo $_SERVER["REQUEST_URI"]; ?>">
3. <h2>Devlounge Plugin Series User Options</h2>
4. <h3>Allow Content Added to the End of a Post?</h3>
5. <p>Selecting "No" will disable the content from being added into the end of a

post.</p>
6. <p><label for="devloungeAddContent_yes"><input type="radio"

id="devloungeAddContent_yes" name="devloungeAddContent" value="true"
<?php if ($content == "true") { _e('checked="checked"',
"DevloungePluginSeries"); }?> /> Yes</label> <label
for="devloungeAddContent_no"><input type="radio"
id="devloungeAddContent_no" name="devloungeAddContent" value="false"
<?php if ($content == "false") { _e('checked="checked"',
"DevloungePluginSeries"); }?>/> No</label></p>

7. <h3>Allow Comment Authors to be Uppercase?</h3>
8. <p>Selecting "No" will leave the comment authors alone.</p>
9. <p><label for="devloungeAuthor_yes"><input type="radio"

id="devloungeAuthor_yes" name="devloungeAuthor" value="true" <?php if
($author == "true") { _e('checked="checked"', "DevloungePluginSeries"); }?> />
Yes</label> <label for="devloungeAuthor_no"><input
type="radio" id="devloungeAuthor_no" name="devloungeAuthor" value="false"
<?php if ($author == "false") { _e('checked="checked"',
"DevloungePluginSeries"); }?>/> No</label></p>

10. <div class="submit">
11. <input type="submit" name="update_devloungePluginSeriesSettings"

value="<?php _e('Update Settings', 'DevloungePluginSeries') ?>" /></div>
12. </form>
13. </div>
14. <?php
15. }//End function printAdminUsersPage()

Set up the User's Panel Action

While setting up the administrative panel, we specified a function called
DevloungePluginSeries_ap that helped initialize the admin panel. We're going to piggy
back on this function in order to add in our user's panel.

PHP:

1. //Initialize the admin and users panel
2. if (!function_exists("DevloungePluginSeries_ap")) {
3. function DevloungePluginSeries_ap() {
4. global

$dl_pluginSeries;
5. if (!isset($dl_pluginSeries)) {
6. return;
7. }
8. if (function_exists('add_options_page')) {
9. add_options_page('Devlounge Plugin Series', 'Devlounge Plugin Series', 9,

basename(__FILE__), array(&$dl_pluginSeries, 'printAdminPage'));
10. }
11. if (function_exists('add_submenu_page')) {
12. add_submenu_page('profile.php', "Devlounge Plugin Series User

Options","Devlounge Plugin Series User Options", 0, basename(__FILE__),
array(&$dl_pluginSeries, 'printAdminUsersPage'));

13. }
14. }
15. }

On line 12, you can see a line of code that:

Adds a sub-menu to the profile.php page.

Let users with a user's level greater than or equal to zero access to the user's
panel.

Calls our printAdminUsersPage function.

The access level (in this case a 0) is described in more detail at the Users Levels page

in the WordPress codex.

Wordpress Plugins and Database Interaction

When you are writing a plugin, you will inevitably have to store variables in a database
and retrieve them. Fortunately WordPress makes data retrieval simple with options and
a database object. This post will cover storing and retrieving data from a WordPress
database.

Storing Data in a Database

There are two main ways to store data in the WordPress database:

1. Create your own table.
2. Use Options

Since most plugins will not require their own database table, I will only cover options.
However, the WordPress codex has detailed instructions on how to set up your own
table.
WordPress Options

With WordPress options, saving and retrieving data from the database is as simple as a
function call. WordPress has four functions for options:

add_option

get_option

update_option

delete_option

add_option

The add_option function accepts four variables, with the name of the option being
required. The variables are: add_option($name, $value, $description, $autoload);

This function is beneficial for adding data to the database for retrieval later.

The $name variable should be unique so that you don't overwrite someone else's option,
or someone else doesn't write over yours.

I usually don't use this function because update_option pretty much does the same
thing.

get_option

The get_option function allows you to retrieve a previously stored option from the
database. It accepts only one variable, which is the name of the option to retrieve. The
function format is: get_option($option_name);

update_option

The update_option function works about the same as the add_option function except
that it also updates an option if it already exists. I personally like the double functionality
of the function and prefer it over add_option when storing data to the database.

The function format is: update_option($option_name, $new_value);

delete_option

The delete_option function deletes options from the database. The function format is:
delete_option($option_name);

A Code Example

You might recall from previous posts in this series that I stored options in the database
as an array. Here is a sample function followed by a brief explanation:

PHP:

1. //Returns an array of admin options
2. function getAdminOptions() {
3. $devloungeAdminOptions = array('show_header' => 'true',
4. 'add_content' => 'true',
5. 'comment_author' => 'true',
6. 'content' => '');
7. $devOptions = get_option($this->adminOptionsName);
8. if (!empty($devOptions)) {
9. foreach ($devOptions as $key => $option)
10. $devloungeAdminOptions[$key] = $option;
11. }
12. update_option($this->adminOptionsName, $devloungeAdminOptions);
13. return $devloungeAdminOptions;
14. }

On lines 3 - 6, I begin an associative array that will eventually be stored in the
WordPress database as an option (line 12). I do this so I don't have to store multiple
options (each a database call). This technique helps with code bloat, database queries,
and naming collisions with other plugin authors.

The WordPress Database Class

Another powerful method of storing and retrieving data from the WordPress database is
using the WordPress Database class object. In a function, a reference to the class would
look like:

PHP:

1. function sample_function() {

2. global

$wpdb;

3. }

After this variable is referenced, you can access the many useful functions of the wpdb
class.

For example, say we want to retrieve the total number of comments for our WordPress
installation. Here's a function that does that using the WPDB class:

PHP:

1. function sample_function() {
2. global

$wpdb;
3. $comments = $wpdb->get_row("SELECT count(comment_approved)

comments_count FROM $wpdb->comments where comment_approved = '1'
group by comment_approved", ARRAY_A);

4. echo

$comments['comments_count'];
5. }

Here's what the function does:

On line 2, we add a reference to the $wpdb variable.

On line 3, we call a function inside the wpdb class called get_row.

On line 3, we retrieve data from the comments table ($wpdb->comments).
We specify that we want the data returned as an associative array (ARRAY_A).

On line 4, we echo out the result. Since I wanted the results returned as an
associative array, I simply call the variable I assigned the results in SQL, which
was comments_count.

The wpdb class is a very large class with a lot of functionality. I suggest heading over
the WPDB Class page and looking over what the wpdb class is capable of.

Using Javascript and CSS with your Wordpress Plugin

A lot of plugins nowadays are more reliant on JavaScript and Cascading Style Sheets. It
is important to separate your JavaScript and CSS into separate files so that the plugin is
easier to maintain. This portion of the series will cover how to load JavaScript and CSS
files for your plugin.

Add your JavaScript

Your plugin might need to load the Prototype library or perhaps a custom script. This
section will show you a few WordPress functions that will allow you to load scripts and
avoid script conflicts.

The wp_register_script function

The wp_register_script function allows you to register your script for calling and can
allow you to set pre-requisites. For example, if your script requires Prototype to have
been loaded, you can specify this.

Here are the parameters for wp_register_script: wp_register_script($handle, $src,
$deps = array(), $ver = false)

The handle is a unique name that you will use to reference your script later. This
variable is required.

The src is the absolute source to your JavaScript file. This variable is required.

The deps variable is an array of dependencies. For example, if your script
requires prototype, you would list it here. This variable is optional.

The ver variable is a string version of the script. This variable is optional.

Say for example you had a script that was located at: http://yourdomain.com/wp-
content/plugins/your-plugin-directory/js/script.js

Let's make a few assumptions:

You want to name the handle 'my_script_handle'.

Your script depends on the Prototype library.

Your version is 1.0

You would likely call the function in your plugin code initialization or after a wp_head
action:

PHP:

1. wp_register_script('my_script_handle', 'http://yourdomain.com/wp-
content/plugins/your-plugin-directory/js/script.js', array('prototype'), '1.0');

http://yourdomain.com/wp-
content/plugins/your-plugin-directory/js/script.js
http://yourdomain.com/wp-
content/plugins/your-plugin-directory/js/script.js'

The wp_enqueue_script Function

The wp_enqueue_script function does the same thing as wp_register_script except
that the src variable is optional. If an src is provided, the enqueue function automatically
registers the script for you, thus making the wp_register_script function somewhat
unnecessary. However, the wp_register_script allows you to register your scripts
manually so you can load all of your JavaScripts using one wp_enqueue_script
function.

If we were to call the same custom script as before, it would be called like this:

PHP:

1. wp_enqueue_script('my_script_handle', 'http://yourdomain.com/wp-
content/plugins/your-plugin-directory/js/script.js', array('prototype'), '1.0');

A JavaScript Example

For the Devlounge Plugin Series plugin, we're going to add in a dummy JavaScript file
that will be used in a later post. The purpose of this file is to demonstrate how to use the
wp_enqueue_script function.

This file is located at the following location: http://yourdomain.com/wp-
content/plugins/devlounge-plugin-series/js/devlounge-plugin-series.js

The file is dependent upon prototype.

The version is 0.1

You might recall that in a previous post in this series, we added an action for wp_head.
The function that was run as a result of that action was called addHeaderCode. Let's
modify this function to add in our new JavaScript:

PHP:

1. function addHeaderCode() {
2. if (function_exists('wp_enqueue_script')) {
3. wp_enqueue_script('devlounge_plugin_series', get_bloginfo('wpurl') .

'/wp-content/plugins/devlounge-plugin-series/js/devlounge-plugin-series.js',
array('prototype'), '0.1');

4. }
5. $devOptions = $this->getAdminOptions();
6. if ($devOptions['show_header'] == "false") { return; }
7. ?>
8. <!-- Devlounge Was Here -->
9. <?
10.
11. }

The above code does the following:

http://yourdomain.com/wp-
content/plugins/your-plugin-directory/js/script.js'
http://yourdomain.com/wp-
content/plugins/devlounge-plugin-series/js/devlounge-plugin-series.js

The wp_enqueue_script function is checked for existence.

The wp_enqueue_script is called with the src, dependencies, and version.

We use the get_bloginfo('wpurl') to get the location of the WordPress
installation and hard-code the rest.

When you go to a post and view-source, the devlounge-plugin-series.js will have loaded
as well as the Prototype library, which is conveniently included along with WordPress
(versions 2.1.x and up I believe).

Loading in the Cascading Style Sheets

I've added a new style sheet to my styles directory. Here are my assumptions:

This file is located at the following location: http://yourdomain.com/wp-
content/plugins/devlounge-plugin-series/css/devlounge-plugin-series.css

I specified an ID called #devlounge-link in the CSS file.

You have added in the following code at the end of a post: <a href="#"
id="devlounge-link">Get the Number of Blog Comments

In the style sheet file, I have added in the following ID:

CSS:

1. #devlounge-link {
2. background-color:#006;
3. color: #FFF;
4. }

Adding in the style sheet for the plugin is as simple as adding a line to the
addHeaderCode function:

PHP:

1. function addHeaderCode() {
2. echo

'<link type="text/css" rel="stylesheet" href="' . get_bloginfo('wpurl') .
'/wp-content/plugins/devlounge-plugin-series/css/devlounge-plugin-series.css" />'
. "\n";

3. if (function_exists('wp_enqueue_script')) {
4. wp_enqueue_script('devlounge_plugin_series', get_bloginfo('wpurl') .

'/wp-content/plugins/devlounge-plugin-series/js/devlounge-plugin-series.js',
array('prototype'), '0.1');

5. }
6. $devOptions = $this->getAdminOptions();
7. if ($devOptions['show_header'] == "false") { return; }
8. ?>
9. <!-- Devlounge Was Here -->
10. <?
11.
12. }

http://yourdomain.com/wp-
content/plugins/devlounge-plugin-series/css/devlounge-plugin-series.css

On line 2, I simply echo out a reference to the new style sheet.

Using AJAX with your Wordpress Plugin

More and more plugins are starting to use AJAX techniques. I personally don't see a use
for most cases of AJAX, but it may be necessary for your plugin to use AJAX to
accomplish a task. This post will show you how to use AJAX with your WordPress
plugin.

This post will be building on the last one where we added in a JavaScript and Stylesheet
file.

Set Up a new PHP File

The Devlounge Plugin Series plugin has the following directory structure:

devlounge-plugin-series
o devlounge-plugin-series.php (main plugin file)
o js

devlounge-plugin-series.js.php
o css

devlounge-plugin-series.css
o php

dl-plugin-ajax.php (new php file for AJAX calls)

Notice I have a php extension at the end of my JavaScript file. I'll explain the change a
little later in this post.

I've created a new file and placed it in the php directory and have called it dl-plugin-
ajax.php. I have placed the following code inside the file:

PHP:

1. <?php
2. if (!function_exists('add_action'))
3. {
4. require_once("../../../../wp-config.php");
5. }
6. if (isset($dl_pluginSeries)) {
7. $dl_pluginSeries->showComments();
8. }
9. ?>

This code is simple enough and is used solely for AJAX calls. It makes sure that config
structure is present so we can call our class object dl_pluginSeries and reference other
WordPress functions and variables. However, the showComments function hasn't been
created yet, so that is the next item on our agenda.

Set up the showComments function

The showComments function is placed inside our DevloungePluginSeries class:

PHP:

1. function showComments() {
2. global

$wpdb;

3. $devloungecomments = $wpdb->get_row("SELECT
count(comment_approved) comments_count FROM $wpdb->comments where
comment_approved = '1' group by comment_approved", ARRAY_A);

4. echo

"You have " . $devloungecomments['comments_count'] . "

comments on your blog";
5. }

You might recognize this bit of code from the database interaction post. This function
outputs the number of comments made on your blog.

Allow JavaScript to Know Where Your Blog is Located

One pesky thing about AJAX is that the external JavaScript file has no idea where your
blog is installed. I get around this by adding a PHP extension to my included JavaScript
file so that I can access WordPress functions. Within the addHeaderCode function, I
changed the code from this:

PHP:

1. if (function_exists('wp_enqueue_script')) {
2. wp_enqueue_script('devlounge_plugin_series', get_bloginfo('wpurl') .

'/wp-content/plugins/devlounge-plugin-series/js/devlounge-plugin-series.js',
array('prototype'), '0.1');

3. }

to this:

PHP:

1. if (function_exists('wp_enqueue_script')) {
2. wp_enqueue_script('devlounge_plugin_seriess', get_bloginfo('wpurl') .

'/wp-content/plugins/devlounge-plugin-series/js/devlounge-plugin-series.js.php',
array('prototype'), '0.3');

3. }

The only thing I changed was the version number and added a PHP extension to the
end of the JavaScript file.

Now JavaScript has a way of finding out where our blog is for AJAX calls. Let's now set
up the JavaScript.

Setting up the JavaScript

The purpose of this script (which is located in devlounge-plugin-series.js.php) is to
find the blog's URL, call the PHP file, and return a result to the user.

JAVASCRIPT:

1. <?php
2. if (!function_exists('add_action'))
3. {
4. require_once("../../../../wp-config.php");
5. }
6. ?>
7. Event.observe(window, 'load', devloungePluginSeriesInit, false);
8. function devloungePluginSeriesInit() {
9. $('devlounge-link').onclick = devloungePluginSeriesClick;
10. }
11. function devloungePluginSeriesClick(evt) {
12. var url = "<?php bloginfo('wpurl') ?>/wp-content/plugins/devlounge-plugin-

series/php/dl-plugin-ajax.php";
13. var success = function(t){devloungePluginSeriesClickComplete(t);}
14. var myAjax = new Ajax.Request(url, {method:'post', onSuccess:success});
15. return false;
16. }
17. function devloungePluginSeriesClickComplete(t) {
18. alert(t.responseText);
19. }

The above code does the following (keep in mind we are using Prototype):

Makes sure that config structure is present so we can access WordPress
functions and variables.

After the document has loaded, the devloungePluginSeriesInit is called.

An event is set up for the link you added at the end of a post (line 7). If you
forgot, now is the time to add the link in. Simply find a post and add this code to
the bottom of it: Get the Number of Blog
Comments

The absolute URL to the PHP file is found (line 12).

The PHP file is called (line 14).

The response is outputted to the user (line 18).

The Result

This next step assumes you are at the post where the link was added. When clicking on
the link "Get the Number of Blog Comments", the script uses AJAX to call a function in
the DevloungePluginSeries class and returns the result to you in the form of an alert
box.

As you can see, I don't have many comments on my local installation.

Releasing and Promoting your Wordpress Plugin

After you have finished writing your awesome WordPress plugin, there are a few things
to consider before releasing and promoting your WordPress plugin.

Prior to Release

Try to Follow the Standards

While it isn't required to follow the WordPress coding standards, there are some things in
there that will make your life easier. One of the more valuable tips in there is to never
use shorthand PHP. The reason? Not everybody has shorthand PHP enabled.

So instead of:

PHP:

1. <? /*your php code*/ ?>

You would have:

PHP:

1. <?php /*your php code*/ ?>

Make Sure You Have Tested Your Plugin Thoroughly

Find some guinea pigs (er, testers) who would be willing to test your plugin. Technically
competent testers are good, but you also want some testers who will represent the
average user who knows nothing about programming languages.

It'll be impossible to find every bug, but at least make an effort to put out a stable
release.

Make Sure You Have a Readme File

Before you release a plugin into the wild, make sure you at the very least have a
Readme file. This file should contain at the very minimum installation instructions for
your plugin. For a stricter version of a readme file, check out the WordPress
recommendations regarding a Readme file. There's even a groovy Readme file validator.

Set Up a Dedicated WordPress Plugin Page

Ajay D'Souza wrote some recommendations regarding releasing WordPress themes.
The advice he gives can also be applied to plugins to an extent.

Make sure you set up a dedicated WordPress Plugin page for your plugin. This page will
be the URL that people will go to to find out everything about your plugin. This plugin
page should contain the following at a minimum:

A brief description of your plugin.

The download location.

A list of features.

Install instructions.

Version history (Changelog).

Known bugs and/or conflicts.

Screenshots or a demo (or both).

Contact or support information (or comments enabled).

The above information will assist you in promoting your plugin, especially the description
and feature portion.

Have a Good Folder Structure

I would argue to always include your plugin in a folder. Any files other than the main
plugin file should be included in sub-directories. Make sure you zip, gzip, or rar your
plugin folder that way it is as easy as possible for people to install your plugin.

Does Your Plugin Require Theme or File Manipulation?

If your plugin requires users to tweak theme settings and/or files, prepare for the
onslaught of bug reports and users wanting assistance. I would argue that a good plugin
requires absolutely no theme manipulation or file manipulation. An exception to this
would be the plugins that add template tags to the WordPress core.

If your plugin does require theme or file manipulation, include detailed examples on your
download page and possibly include some examples in your release.

Promoting Your Plugin

After you have your dedicated download page, it is time to start making plugin
announcements so people will download your work. The time you spent on your
description and features is crucial since you'll be using these for your plugin promotion.
Others who link to your plugin will be doing the same.

Promote at Weblog Tools Collection

A very good resource for promoting your plugin is the Weblog Tools Collection news
section. Under their Plugin Releases section, you can give details regarding your new
plugin.

Promote at the WordPress Plugin Database

The WordPress Plugin Database is another good resource for adding in your plugin. The
process for adding your plugin isn't the most straightforward, but there are detailed
instructions.

Promote at the Official WordPress Plugin Repository

WordPress itself has offered to host your plugin. You have to meet several requirements

before you will be allowed to add your plugin, however. Remember that any publicity is
good publicity.

Promote Using Social Networking

Add your plugin to delicious, Digg, and Stumble Upon. Get your friends to help. If your
plugin is good enough, the referrals will start coming in.

Promote On Your Own Blog

If your plugin is something that people will notice, use it on your blog. People may start
asking what plugin you are using. Word of mouth is a powerful ally, especially in the
blogosphere.

Conclusion

You can have the best plugin in the world, but if it isn't released and promoted correctly,
very few people will download it. Once you start the promotion process, it is important to
listen to feature and bug requests, especially if your plugin is very young. If your plugin
doesn't work, or too many people have problems with it, people will be wary of
downloading your plugin. It's important to get those bugs fixed and the crucial features
added in early. Most of these problems can be solved during testing, but some bugs just
don't seem to crop up until after the official release.

The End of the 'How to Write a WordPress Plugin' Series

Thank you for reading the final post in the plugin series. Hopefully this series proved
beneficial to you and helped establish a foundation for you to write your own plugins.
Thank you very much for reading.

About the site:

Devlounge is a designer and developer resource providing articles, interviews, and
exclusive extras such as this article e-book. Please visit http://www.devlounge.net

for

more content and features just like this by this and other authors. All content is
copyrighted © to their respected owners and Devlounge, and may not be reproduced
without permission.

A note about Code:

Many code samples used in this series can be downloaded by visiting the specific
section page on Devlounge. Be sure to visit the How to Write a Wordpress Plugin main
page at http://www.devlounge.net/extras/how-to-write-a-wordpress-plugin

to leave
feedback, download code, or ask a quick question. You can also dig the article from that
page and show your support.

© 2007 Devlounge http://www.devlounge.net

http://www.devlounge.net
http://www.devlounge.net/extras/how-to-write-a-wordpress-plugin
http://www.devlounge.net

This document was created with Win2PDF available at http://www.win2pdf.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.
This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com

